Comparison of Data-Driven Analysis Methods for Identification of Functional Connectivity in fMRI
نویسندگان
چکیده
Data-driven analysis methods, such as independent component analysis (ICA) and clustering, have found a fruitful application in the analysis of functional magnetic resonance imaging (fMRI) data for identifying functionally connected brain networks. Unlike the traditional regression-based hypothesis-driven analysis methods, the principal advantage of data-driven methods is their applicability to experimental paradigms in the absence of a priori model of brain activity. Although ICA and clustering rely on very different assumptions on the underlying distributions, they produce surprisingly similar results for signals with large variation. The main goal of this thesis is to understand the factors that contribute to the differences in the identification of functional connectivity based on ICA and a more general version of clustering, Gaussian mixture model (GMM), and their relations. We provide a detailed empirical comparison of ICA and clustering based on GMM. We introduce a component-wise matching and comparison scheme of resulting ICA and GMM components based on their correlations. We apply this scheme to the synthetic fMRI data and investigate the influence of noise and length of time course on the performance of ICA and GMM, comparing with ground truth and with each other. For the real fMRI data, we propose a method of choosing a threshold to determine which of resulting components are meaningful to compare using the cumulative distribution function of their empirical correlations. In addition, we present an alternate method to model selection for selecting the optimal total number of components for ICA and GMM using the task-related and contrast functions. For extracting task-related components, we find that GMM outperforms ICA when the total number of components are less then ten and the performance between ICA and GMM is almost identical for larger numbers of the total components. Furthermore, we observe that about a third of the components of each model are meaningful to be compared to the components of the other. Thesis Supervisor: Polina Golland Title: Assistant Professor of Computer Science and Engineering
منابع مشابه
Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data
Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...
متن کاملFeature Selection Based on Genetic Algorithm in the Diagnosis of Autism Disorder by fMRI
Background: Autism Spectrum Disorder (ASD) occurs based on the continuous deficit in a person’s verbal skills, visual, auditory, touch, and social behavior. Over the last two decades, one of the most important approaches in studying brain functions in autistic persons is using functional Magnetic Resonance Imaging (fMRI). Objectives: It is common to use all brain regions in functional extracti...
متن کاملAnalysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملEvaluation of Sensory Pathways in Spinal Cord by Comparison of fMRI Methodologies
Introduction: Today, clinicians and neuroscientists need to have a comprehensive survey of neurological pathologies and injuries. For the First-time, SEEP contrast and Spin-Echo pulse sequences was used for functional imaging of the Lumbar spinal cord. This method used by several research groups for Spinal cord mapping, but other researchers tried to improve BOLD fMRI to Spina...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کامل